Searching for Spanning k-Caterpillars and k-Trees

نویسندگان

  • Michael J. Dinneen
  • Masoud Khosravani
چکیده

We consider the problems of finding spanning k-caterpillars and k-trees in graphs. We first show that the problem of whether a graph has a spanning kcaterpillar is NP-complete, for all k ≥ 1. Then we give a linear time algorithm for finding a spanning 1-caterpillar in a graph with treewidth k. Also, as a generalized versions of the depth-first search and the breadth-first search algorithms, we introduce the k-tree search (KTS) algorithm and we use it in a heuristic algorithm for finding a large k-caterpillar in a graph.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Snakes and Caterpillars in Graceful Graphs

Graceful labelings use a prominent place among difference vertex labelings. In this work we present new families of graceful graphs all of them obtained applying a general substitution result. This substitution is applied here to replace some paths with some trees with a more complex structures. Two caterpillars with the same size are said to be textit{analogous} if thelarger stable sets, in bo...

متن کامل

Constructing Graceful Graphs with Caterpillars

A graceful labeling of a graph G of size n is an injective assignment of integers from {0, 1,..., n} to the vertices of G, such that when each edge of G has assigned a weight, given by the absolute dierence of the labels of its end vertices, the set of weights is {1, 2,..., n}. If a graceful labeling f of a bipartite graph G assigns the smaller labels to one of the two stable sets of G, then f ...

متن کامل

The Loebl-Komlós-Sós Conjecture for Trees of Diameter 5 and for Certain Caterpillars

Loebl, Komlós, and Sós conjectured that if at least half the vertices of a graph G have degree at least some k ∈ N, then every tree with at most k edges is a subgraph of G. We prove the conjecture for all trees of diameter at most 5 and for a class of caterpillars. Our result implies a bound on the Ramsey number r(T, T ) of trees T, T ′ from the above classes.

متن کامل

On Repetition Thresholds of Caterpillars and Trees of Bounded Degree

The repetition threshold is the smallest real number α such that there exists an infinite word over a k-letter alphabet that avoids repetition of exponent strictly greater than α. This notion can be generalized to graph classes. In this paper, we completely determine the repetition thresholds for caterpillars and caterpillars of maximum degree 3. Additionally, we present bounds for the repetiti...

متن کامل

On relation between the Kirchhoff index and number of spanning trees of graph

Let $G=(V,E)$, $V={1,2,ldots,n}$, $E={e_1,e_2,ldots,e_m}$,be a simple connected graph, with sequence of vertex degrees$Delta =d_1geq d_2geqcdotsgeq d_n=delta >0$ and Laplacian eigenvalues$mu_1geq mu_2geqcdotsgeqmu_{n-1}>mu_n=0$. Denote by $Kf(G)=nsum_{i=1}^{n-1}frac{1}{mu_i}$ and $t=t(G)=frac 1n prod_{i=1}^{n-1} mu_i$ the Kirchhoff index and number of spanning tree...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008